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FOREWORD
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Nonlinear Estimation Techniques

Summary

This paper considers a discrete, real time nonlinear estimation
problem using a least squares criterion. A sequentia! algorithm is
derived which allows consideration of second order nonlinearities in
system measurements. Alternate nonlinear estimation techniques
are discussed and examples are given which compare the various
estimation algorithms,

Introduction

A sequential solution to the optimal linear (gaussian) estimation
problem is well known [3, 4, 5]! and has been used extensively. The
problem of real time (i. e. sequential) nonlinear filtering has received
considerable attention with varying degrees of success [1, 2, 6, 7, 8).
The typical approach to the sequential nonlinear estimation problem
consists of a local linearization cf the various nonlinearities together
with an application of the linear theory [1, 8]). Sridhar and Detchmendy
[2] have considered a continuous nonlinear filtering problem from a
least square point of view with results which allv 7 second order non-
linearities in the observations to be considered in the computation of
the filter gain matrix,

This paper first considers a discrete nonlinear estimation problem
using a least squares criterion. A sequential algorithm is derived which
allows considcration of second order nonlinearities in system measure-
ments. The Sridhar-Detchmendy filter (2] is then obtained by a straight-
forward limiting argument.

In arder to test the utility of the derived algorithm, the more popular
approaches to nonlinear estimation are discussed and examples are given
which compare the various cstimation algorithms.

!Numbcrs enclosed in Lrackets designate references.
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1. Problem Formuiation and Solution:

Consider a system of the form
xen = f(xy, ux, k) + Qxwx (1)
yx = h(xg, k) + v (2)

where x, y, u, v, w are column vectors and h, {f represent vector
valued functions of their arguments. The vector u represents a
deterministic system input, w represents a stochastic system input
distributed into the system by the matrix 4 while v represents mneas-
urement e€rror.

Based on the measurements y;, ..., Ya, @ sequential estimate

of x, is desired. In order to obtain a solution, this problem 1s
imbedded in a somewhat larger problem, namely obtain those estimates

[J'El, \}. {\Q’l, n}

which minimize

2
Ja = ”’A(o,n - 9‘°'°“p° 0-1

’
-1

- 3
+ gEo (”y‘n - h(&g#}.., i+ 1)“R‘ﬂ'1 + ““A’l.!“Q"x) (3)

subject to the constraints
Rion,a = £(&y, s, ug §) # 8yWy 0 120, ..., m -1 (4)

When the random variables w;, vy, Xo are independent and gauss-
fan with covariance matrices given respectively by Q;, Ry, Po, o, then
(3)2 results from a maximum likelihood critericn (1]). However, in

zNumben enclosed by parentheses ( ) designate equations.




a practical situation very little is known about the statistics of the
several variables. At best, estimates of the first and second
moments of each component of the vector random variables are
available. In such a situation, (3) may be considered as simply a
""least squares" criterion. The positive definite matrices Po, 0, Ry,
Qi can be diagonal with estimates of the second moments placed

at the appropriate coordinate. To simplify notation, the arguments
uy, k will normally be suppressed in the sequel.

To obtain the desired estimates, introduce multiplier vectors
{24, .} and form the functional

A=l
Caz=Tat2 I Ayal&een,a- 1) - 80%y,a]

Performing the required differentiation and equating the various
derivatives to zero yields the following two point boundary value
problem:

Reeton = £y, 0) + 84Q81Ay,a, 820, ..., n- 1 (5)

A1-1,a = f1(Re, 2)Ay, 2 + hilks, )Ry 'Ly - h(%y, ],

i=l1l, ..., n (6)
Xo,a = Xo0,0 * Po, ofy (%o, 1)Ao, a (7)
Aea=0 (8)

An approximate solution to this problem ca;: be obtained by induc-
tion on n and i [cf. Appendix A)and is given by

a¥

Xg,a = it, -l ngiﬁ(if, I-l)(x‘. xl. -1}, n 21,

i=0. ....n‘l (9)

3Following Cox [1], the notation A® is used to denote an approxi-
mation of A. The superscript (n) is used to emphasize the dependence
of the various variables on n.




where

e
G £
£}
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B
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din
Lol
¥
»

Pg:)o = Po,o, n21 (10)
(0 _ () B8 g~ P
- Phi ={l- P" -1 3ax [h‘R‘ (YI - h)];(t' .-1‘ P‘v 1-1
nz2,i=1, ..., n-1 (11)

P = Py, 0 = fa(ho, dPo,ofk (Ao, o + oQoto, 022 (12)
(R _ A% ()
Py 1= falxi, )P, af (X4, a-1) + 821 Qu-1 8000,

nz3 i=2, ..., n-1 (13)

The approximate solution (9-13) to the two point boundary value
problem (5-8) can be used to approximate &4,a Lcf. Appendix A].
The results are given below for n 2 1:

i:‘, 1 = f(Ry, am1) (14)
AL = &8 + Kalya - B, am)] (18)
Ka = Pa, s b (%8, ac1)Ra (16)

a - -1
Purs|1-Puaa R0l | P 0
£2(23-1, 8-1)Pa-1, 21 £} (xa-1,2-1) + Baca Qu-1811  (18)
The computations are initiated with ?m. o Po,o.

Cox (1) and cthers have considered the prediction of x, based
onyy ...» Ya-i With results which furnish some justification for
the definition and notation used in (14). Throughout the remainder
of this paper, (14) shall be considered as one-sample prediction
while (15) shall be referred to as filtering.




Assuming that certain components of (17) are invertable, alter-
nate forms of (16, 17) can be obtained [cf. Appendix A] and are
given bLelow:

Ka = Sahy (¥ 43)[hy (%5 a-1)Sahl (%a, a-g) + Rp ™2 (16")
Sa = [I- Paa1Ly) Py, aa (16%)
Pa,a = [I - Kahy (e 2-1)] Sa (17)

2, A%
Ly = (tu(), dym) = 002l g0y, - wfE )] (1)

h ith

where xy, x; denote respectively the it and j*© components of the

vector x.

In the last form, it is apparent that (16“) is the only additional
computing require. ...r the usual linearizatuion of plant dynamics and
observations. Essentially, (16") represents a modification of the
matrix P;,2-; based on an appropriate consideration of the second
order nonlinearities of the observations h. It is interesting to note the
close resemblance of (15-17) to the computing algorithm resulting from
the minimization of ||y - h(x)”;{-; using steepest descent,

2. A Continuous Problem

The continuous version of the estimation problem under considera-
tion has been formulated and solved by Sridhar and Detchmendy [2].
Their results can also be established by using the classical method of
finite differences and the discrete algorithm (14-18).

The dynamics and observations of the continuous problem are
modeled as

x(t) = glx, u, t) + G(t)w(t), 0 St € T (21)
y(t) = hix, t) + v(t) , 0Sts T (22)
where the various variables are defined as above. The variables x,
Yy, u, w, v, G are continuous, g is continuously differentiable with

respect to x and h is twice continuously differentiable with respect
to x.

S Ao <t K
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Given y(t), 0 £t < T, estimates ﬁ(t;T), v't'(t;T) of x(t), w(t) respec~
tively are desired which will minimize

3T) = [1&05T) - Aios0) ||, -1

T . 2
+ [ (llyte) - BT, 130 + NowmIf e (@3

subject to the conatraint

26T) = gld u,t] + GEIVET), 0<tsT (24)

. A discrete approximation to the preceding problem is obtained
by partitioning the interval (0, T] into n equal subintervals {t;, t;+1]
each of length At. After suppressing the arguments u, t, the results

are

Xg+) = f(x,) + A,w, i=0, ..., n-1 (25)

yi=hixg) +vy i=1, ..., n (26}

-1 2
Ja = “30.: - go,o“:,o-l + gEo “Yu; - h(iux,.)“AtR‘ﬂ-x .

Iix A 2 ‘
¢ T HSallyg (27) i
Xy, = Ry ) + 04Wy, 9, 120, ...,m-1  (28) i

flxg) = x¢ + Bugixg) + ofAt)

8y = 8t G(t,) + o(4t)

Applying the results (14-19) to the discrete problem (25-30)
obtains




ﬁ*», + JA{* A% A%
= - - A
Xaaanl - Xup o o(d% ) 4 Py an by LE(Xa, 1) JR(T) " {yaes - Blf(2a,

At ot

Holding T = n At constant, letting 4% =&%(T) =42 . P(T) = Py,» and
taking the limit as 4t — 0 yields

¥ = g(5%) + P(ThL(EMR(T) AT - h(2H)] (31)

To obtain P(T), use (16-19, Al5) and (18, 29, 30) to obtain
respectively

Pas1.at1 = (I = Kern Hund)lI + Pavy, aLaea(l - Pary, aLa+d) 'IPasy,,  (32)

Pa+1,s = Pa,a + 0t[gsPy,a + Py, 2gs + GQG'] + o(at) (33)

where Hpey = hy [f(ﬁf, 2l

Substituting (33) into (32)

P - P
’1 “Z: 3,8 = gxp..‘ + P‘,‘g; + GQGt

+ IPI*I. l(‘l%?'l)(l - plﬂ,nlaﬂ) . (EA_.tn) H|+1|P... + 2{%9-

which implies that

P - guP + Pgl+ GQG' - PhyR™'h P + PLP (34)
where
L= (L), ¢ =ﬁ‘i’ﬁa“(r)tym - h(x%))
L3 [ §] ax’ ax‘ .

Combining terms

P:gP+Pgl+ P-g‘i; (hiR*(y - h)]:‘*p + GQG' (35)

R
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Equation (31) together with (34 or 35) represents an approximate
sciution to the continuous filtering problem. Equations (31, 35)
represent the solution as derived by Sridhar and Detchmendy [2].

3. Other Nonlinear Estimation Techniques

In order to establish a basis for testing the utility of the results
cf Section 1, two other nonlinear estimation techniques are now dis-
cussed,

First, following [8], consider a system of the form (1, 2) where
the m components of h are lincarly independent functions of the m
components Hx of x. Linearizing h about H% yields the approximation

y = h(Hx) + v £ h(H%) + J(Hx - HR) + v

where the Jacobian J of h at HxX is nonsingular. Inverting J yields
the (transformed) linear observation:

y¥* =3 y- h(HR))+ HX = Hx + I v . (36)
Using the linear theory,
’?I, a ¥ ﬁl’ -1 + Gy [Yt - Hi&, a-1] (37)

vhere the gain sequence {G,} is computed using the observability
matrix H and the measurement error covariance matrix J xR\(J x)'.
Subatituting (36) into (37) yields

’?-, s 5 ;t.. -l ¥ GIJl-l[Yl - h(il. u-l)] (38)
One interesting aspect of (38) is that the gain matrix
K. < G.JQ“

is factored into a product of a smoothing component G, and a linear-
izing compouent J, ', Moreover nominal values can often be chosen

v 5 LN o AR




for JT*R(J7Y)" and £, thus allowing the gain sequence {G,} to be precom-
puted and stored in computer memory for real time data processing.

Another approach which is often successful consists of using a
one-to-one nonlinear transformation o to map the original nonlinear
problem (1, 2) into a space in which the transformed problem is
linear, i, e.

A (x2+1) = Pasry, n(’(xl) + By wy (39)
A (Va) = MyKx,) + va (40)

The statistics cf the m~asurement error {v,} in (40) are usually
quite complicated and very nongaussian. However, a direct application
of the linear theory (rationalized by the least square interpretation of
Section 1) often provides excellent estimates#(x) of A{x). Moreover,
the estimate

% -3 (W) (41)

may also be quite good. Needless to say, the resulting estimates are
not necessarily optimumn,

In the sequel, nonlinear estimation using the standard linearization
of system dynamics and observations, i.e. using (14-18) with L. = 0, will
be referred to as Type I estimation, using (14-18) as derived will be
called Type 1I, .he approach of (8] as described above is Type Il while
the last approach just described is F-estimation.

4. Examples

Several controlled experiments have been conducted in order to
test the utility of the various discrete nonlinear estimation techniques.
Two of the experiments will be described below. (In the following two

examples, lower case alphabetic characters will denote scalars.)

First consider a discrete form of example 2 of [2). The system
cquations are

Xy 2, xg=0, a3 =22, T=0.1




and forn 2 1,

-

L e et Ao

x.+1 = X + TJ'(. (42)
¥p+1 = (1 = 3T)%, - 2TXa - Tagx," + 57 sin (nT) (43)
ag+l = e"O-l? ax (44)

In order to provide a significant comparison of the estimation algo-
: rithms under consideration, output observations with significant :
nonlinearities should be considered. (This is a departure from the i
' examples considered in [2].) Consequently, the output observations :
for this example are modeled as

Ya = 2 8in ("—'?) tva (45)

which simulates severe saturation near the maximum position ampli-

tude. Since the dynamic range of the position ranges from about -1.5

to +1.5 after initiation, the observations are not one-to-one. Hence

it was rot obvious in advance that the system (42-45) was obsarvable. !

Neither the Type IIl algorithm nor the F-transformation technique
seem suited for this example., The Type I, 1l estimation equations are

x;,0 = 0, ﬁ;.o =0, a3 =2 .

and forn 2}, .

*
L
-
‘

Xa,a = Xa, a1+ kn(n) l Yo - 2 8in (_'2“3) ‘

ﬁl,l s ﬁl,l'l" ka(n) I Ya - 2 sin (,—ﬁ%‘!‘:‘l) ‘ :

A A L
Xged, s = Xa, 0 + TXy,n

R e
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)/.é|+1’l = (l - 3T)§\‘I.I - ZTQ" a - Ta.ﬁ.' ‘3 + 5T sin (nT)

"O-IYa

dg+] T € a

kas
ka

L4

The gain matrix ( ) is obtained by numerically solving (16, 16",

17, 18, 19) with

- 1 T Pros [} 0
T iT(243 200, 0Y)  (1-3T) Lo |o 4

r

A
hy =| mcos (E‘li-!-l) o], Q=0, R=0°:=E(W)

b

For Type I estimation, L - 0 while for Type II,

[ - sin (Byas)
pc

2 A
n /Xy n-
Ly = -— sin 2.0 ‘)
1 > { >

is the only nonzero component of L.

With ¢ = 0.1, typical results for position estimation are illustrated
in Figure 1. The results for velocity estimation are similar. It seems
that Type I estimation has better initial estimatcs while Type 1l is
better after 1bout 10 samples havz been processed. However, there
is little difference after processing 30 samples. These results were
substantiated by a 50 run Monte Carlo experiment. The rms position
estimation errors vs. time are given in Figure 2.

Since the examples given in (2] only used measurement error of
approximately the same magnitude as above, it seemed worthwhile to
consider lower signal to moisc ratios. As 0 was increased a rather
startling result occurred for 0 near 1 (S/N 0 db). For this lower
signal to noise ratio, the Type 1l algorithm usually performed best
whenever it would work, however, it would occasionaily become unstable
during the first few samples of tracking. Instability was never observed
in the Type 1 algorithm. Moreover, the Type I algorithm furnished good
estimates of both position and velocity for all values of 0. In fact the
rms croors for the Type | algorithm with @¢- 1 differed very little from
the case 0 - 0.1, The estimation errors seem almost entirely due to a
dynamic bias resulting from poor initiation.

11
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As a second example, consider a two dimension tracking problem,
Target range and azimuth are measured every second with an accuracy
of 200 yards and two milliradians respectively. (Notice that no statis-
tical information concerning the errors is available.)

The target dynamics are modeled in a Cartesian reference frame
as

A
Xp + TaXa + 5— Wi

2

Xa+2

Xar1 = X3 + Tawyy
with similar equations for the y-axis. The sequence {wia} represents

random acceleration components along the x-axis. The output observa-
tions are

r=(x*+ 331 v, 8= Arctan L) 4 v,
y x

All four approaches discussed above can be used for this example.
An J-transformation for this example consists of performing a polar
to Cartesian coordinate transformation on the measurements R, 6 and
tracking in the x-y plane ignoring the introduction of correlated errors
on the synthetic measurements. The resulting x-axis estimation
equations are

A A
xX3,0=X,0=0

b
-

v

1
2‘>

ya-1 * Qg €gy
&

A
Xa, a 5 Xy, 5.1 *.r. €xa

A ,
Xeel,n = Xa,u + Taza,n

H

A
Xptl,n = Xe,a

A
€ = racos 8y - X, 4.3

12




with analogous equations for the y-axis. (This is a nonstationary form
of the fan.iliar a-8 tracking filter.) This filter tracks very well using
an initial segment of the gain sequence computed with

() nevw -3 )

10° o
R=1 p"°=(o 10‘)

which allows the gains to be precomputed. Estimates of range and
azimuth are furnished by

A
r (;\(3 + 93)1/3

Arctan (yX) .

Type LI estimation is performed exactly as above except that

A A
Xy,y=rycosf , x,1:=0 ,

€xy = 'Q-.";“:—l (ra - Ql) - 9-. a=1 (en - 6!)

A

';'\: = (Ql,l—lz + 9-. ._la)l/a , 6, = Arctan (i: n-:)

For Type I, U estimation

fara = Ruyae1 + ku(@)(ra - Fa) + kig(n)(Be - 6a)

fa.n = Ruyae1 + kan(n)(Fa - $a) + kealn)(8s - 64)

Attempting to avoid numerical problems in the computation of the gain
matrix

Ka = {ky(n))

13
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the position units are taken as [hundred yd] while [milliradian] is used
for the angle unit. It follows that

gt T AT RN PR

’Ql. a-1 0 &I.-l:l 0
R - (4 0) h . f‘ i‘l
“\o 4 o 10394, 23 0 10°%, a-3 0
2‘ * f" i'la
: To assure nonzero steady state gains,
™ 1°
ian DO) .
Q=10 (0 D » D= T3 2
> T

and for good transient response,
P1,0= 101 .

For Type II estimation, the nonzero components of L are
A e A A A A
£1(n) X-;—,LET'_I . -’-(10°)x.r.- - gs.;e!z
s |

A
Lis(n) = Lu(n) = - gaa}_%n_-‘.(&f_-l . &10’29&‘. a-1" (6s - 64)
T 4 ry 4

X 4

Raa®(ra - B 200098 a1 ey (6 - B)
Las(n) = =4 . !g:‘;_l_..l;l -

For this example, the Type I, Il algorithms respond very poorly
unless initiated with good initial estimates of target position and
velocity. Both Type Il estirnation and the Ftransform filter always
performed very well for both position and velocity estimation. Essen-
tially no difference between the two was observed for the noise levels
described. Typical range estimation errors for the four filters are
given in Figure 3.

14




5. Conclusions

At this point, it is standard procedure to proclaim the usefulness
of derived results after a consideration of contrived examples. While
such conclusions often '"look good on paper,' it is very frustrating to
find that the examples are unique in illustrating the utility of a particu-
lar resuit.

The two examples given above were designed to point out the fact
that none of the popular approaches to nonlinear estimation represent
a universal solution to nonlinear estimation problems. Rather, it
appears that ingenuity as well as discretion is presently required in
obtaining practical solutions to meaningful nonlinear estimation
problems.

A few empirical results which appear to hold in general are:

a. If the signal to noise ratio is low the Type II algorithm may
be unstable. Of all the approaches considered, the Type II algorithm
appears the most sensitive to low signal to noise ratios.

b. If the initial estimates J’h,o based on apriori knowledge are
poor, both Type I and Type Il algorithms may exhibit poor transient
response. These algorithms seem especially sensitive to initial
errors in the estimate of the direction of the initial state vector x;.

c. If either Type I or Type U estimation is used, the filter gain
matrix normally must be comauted on line. The main reason being
that the filter gain matrix is extremely sensitive to the value of the
observability matrix h,. Instability will usually occur when attempts
are made to use precomputed gains. However, it is quite possible
to formulate the Type 1l algorithm und anFtransformation in such
a fashion as to allow the use of precomputed gains., That is, the last
two techniques are considerably more amenable te real time computa-
tion.

d. When applicable, Type 1l estimation or appropriate Jftrans-
formations scem to enjoy the greatest utility of the four techniques
which have been considered. The resulting filters exhibit little
sensitivity to initintion errors and low signal to noise ratios.

In view of the results of this study it seems that the results of (2]

(or of Section 2) should be exposed to the problems of large initiation
errors and low signal to noisc ratios, Also, the performance of the

15
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Sridhar-Detchmendy filter (2] should be compared with algorithms
which can be considerably less complex to implement (i. e, the continu-
ous version of the Type I and Type 1l algorithms).

16
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Appendix A

APPROXIMATE SOLUTION TO THE TWO POINT
BOUNDARY VALUE PROBLEM

Consider the two point boundary value problem derived in Section 1.

Rint,n = £(Ry,a) + 8 Qu8iAy s, 120, ..., n-1

Ai-1,s = fa (R, Ay, n + hu(Xy, Ry lys - Bk, ), i=1, ...

ll,|=0

%o, 0 + Po, ofy (X0, 3)Ao, »

%o, «
Setting n = 1 and linearizing f(3o, 1) about Xo, o yields

&7,1 = 18, 0) + falRo, o)lko, 1 - Xo,0) + o Qo iAo,
Assuming

fa(Xo,a)  fa (%o, o)

and using {A2-A4) yields the approximation

i:, 1 = £(Xo,0) + Px,oﬁ:(:tx.x)R;; Iy - hiXy, )]
where

Py, 0 = f,{Xo, 0)Po, 0fz(Ro, o} + Bo Qo 8b
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Linearizing hl (.Q;, 1)R1.1 [yl - h(ﬁx, 1)] about JAc’f,o = f(ﬁc, o) results in
a second approximation

’Air, 1= X5 o0+ P, ohy (‘i’f, oR lyy - h(x1 o)]

* *
+ P, °3% [h:Rx (yr - h)Jﬁf 0(5‘41.1 -x 1,0)

which implies

xf 1 = xx,o + Py, h (3 R o - h(ii", o)]

where
3 Ty =1 2
Pri=|1-Po37 [h:Ry (11 - h)]ﬁr,o Py o
From (A2, A4) it follows that

* * - *
X0,1 = %o,0 + Po, ofy (Xo, o)hx (X3, 1 )Ry Iy - h(X1,1)]

Now, assuming that {it 2-1:1=0, ..., n- 1} have been deter-
mined, consider the following proposition:

Forn 2 2,
A
A s X Pt A w)a - A aca) 850, ..., n-1 (AS)
where¢
po o-Poo ,  (A6)
) () "
p.. I - p 'l 3 ) [th‘ (Yi - h)]“ pl' “‘

‘. 8=1

i=1l, ....,n-1 (A7)

It is tacitly assumed that the appropriate inverse exists.
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P{% = Py, 0 = £x(Ro, o) Po, ofk (%o, o) + 0080 (A8)

A T A%
P(x:)a-x = fy(xq.1, --1)P(z.'-)1, 1o1fx (K11, a-1) + 840 Qu0 8% -1,

nz3 1i=2, ..., n-1 (A9)

The statement A5 for i = 0 follows immediately from A4. Next,
the proposition is established for i = 1, nz2,

Setting i = 1 in Al and linearizing £(Xo, a) about %o, 0 yields
4% 2 = f(%, 0) + P1, oA,
which implies
)Atz*, a = Xt -1+ P o0fho.a - Ao, a-1)
where
Ao, x = fh(dy, 21,8 + hi (X5, a) Iy - B, a)]

Ao, a-1 = £3 (X1, 0-2)21, -1 + hy (Qx,;-x)[n - h(Xy, »-1)]

Linearizing hy (x1, JR1 [y - h(X;,a)] about .Qf, a-3 and assuming
fa(y, 0) & fa (R a-1) yields

. ﬁf, a1 + Py, 0fy (’A‘:. a-1)(A1, 0 = Ay, a-1)
) Ty =2 Ak AR
* 3% (h:Ry ‘i1 - h)]gi ._‘(Xx, 2 - X, 0-1)
which establishes AS for i = 1.

Now, from Al,

fiac fRio,0) # 81 QiaaBiadige, 221 21 0 m
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Linearizing f(ﬁ,_;. a) about ﬁ,-;, a-1 Obtains
ﬁ:, 2 = E(R1oy, e1) + £ (3T, )&, - 9‘?—1, a-1) + 8401 Qy-2 8121 h4ug,
By induction on i, it fcllows that
xF = 10001, 0-1) + P (o, e - Ateayac1) + 8301 Qi A1 Age, ae
where
P(x?x-l = f.(:“c’f.l,.-x)P‘&, i1 fx (ﬁ-x,aa) + 65.1Qi-1 812

Noting Al, it follows that

A ¥ AR (n)
X, 2 = Xg,0-1 + Py 1-1 (-1, 0 - Ag-1,8-1)

The remaining arguments are analogous to those used in the preceding
case,

The approximate solution (A5-A9) tc the two point bcundary value
roblem (Al-A4) can be used to establish a computing algorithm for
X% a. Setting i = n - 1 in A5 yields

A% A T ,AX
Xa-1,2 = Xa-1, -3 * Pacy, a-2fa{Xacy, 2-1)Aa-, s

Linearizing the dymamics i(ﬁ.-x, a) in Al about 3‘::‘.;, »-1 and using the
preceding equation implies

’A‘:,l = f(i:-), l-l) + pl. a=1 16‘:. u)Rl-‘ EY: - h(i‘(:. l)]

where

i ¥
Py, s-1 © falRa-1, a-1)Pact, a-2 fa (Rus, | Oa-1 Q1811 (AL0)

Linearizing hi (X o)Re ' [ys - h(ﬁ:" a)] about i:, a1 ¥ f(ﬁ:.;, s-1) Obtains
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’A(’:, s = :‘, 2-1 + Py, 2 by (9‘: I-I)Rl-l Lya - h(’h‘:‘, s-1)] (All)

with §

-1
d -
Pl,l = |1 - Py, l-l'a_x' [h;RI 1(}’! - h)]’/\‘:‘ ._1| Py, a2 (A12)
’

Equations (A10-A12) constitute a computing algorithm for 2:‘, 3

2
)

Alternate forms of (Al2) can be obtained with moderate assump-
tions. Assuming that P, a-3 is nonsingular allows (Al12) to be expressed
as

’ Pl,l = {Pn,n-1-l - Ia+ h;(i:, l-1)Rl-1hx(3A‘:‘, l-l)}-li

3%n(k A -
L, = (l.,,(n)), lu(n) = :hs’%%;_‘_xl R, l[Yl - h(:Ac:, l-l)]

h

where x;, x; denote respectively the ith amd jth components of the

vector x.

Using the matrix identity
(B*+CR™*D)*=B- BC[DBC + R]"'DB (A13)

and assuming that

1

Sa ' =Py - la .
is invertable yields
Pa,s = Sa - Sehi[haSahl + Rl heSa (A14)
Sa:Puact * Paralall- Pasila] 'Pyaa (A1)
: [1- Py ac1la) ' Paan (A16)




It now follows that

K. = Py 2hiR,"} = Sahi[hySahy + Rl ™

which implies that

Pn,: = [I - thx]Sn
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